Publications
Rapamycin and Alzheimer disease: a hypothesis for the effective use of rapamycin for treatment of neurodegenerative disease
In 2019 we summarized work relating to the potential use of rapamycin for treating Alzheimer disease (AD). We considered the commentary necessary because use of rapamycin in people with AD is a very real prospect and we wanted to present a balanced view of the likely consequences of MTOR (mechanistic target of rapamycin kinase) inhibition in the AD brain. We concluded that use of rapamycin, an MTOR inhibitor that increases macroautophagy/autophagy, could hold promise for prevention of AD if used early enough. However, MTOR inhibition appeared ineffectual in resolving existing amyloid pathology in AD mouse models. In this View article, we update these observations with new studies that have used rapamycin in AD models and provide evidence both for and against its use in AD. We also discuss rapamycin in the light of new research that describes rapamycin-induced autophagic stress in the aging brain and autophagic stress as the origin of the amyloid plaque itself. We conclude that rapamycin will have complex effects on the brain in AD. Further, we hypothesize that lysosomal degradative capacity in the brain will likely determine how effective or detrimental rapamycin will be as a treatment of AD.https://www.tandfonline.com/doi/full/10.1080/15548627.2023.2175569
Autophagy
2023
Human autophagy measurement: an underappreciated barrier to translation
Timothy J Sargeant, Julien Bensalem
Preclinical research shows that autophagy is a modifiable process that holds promise for preventing human age-related disease. However, this knowledge has not been clinically translated. Here, we discuss recent developments in the ability to measure human autophagy, and why it is a critical step for translation.https://www.cell.com/trends/molecular-medicine/abstract/S1471-4914(21)00251-3?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1471491421002513%3Fshowall%3Dtrue
Trends in Molecular Medicine
2021
Measurement of autophagic flux in humans: an optimized method for blood samples
Julien Bensalem, Kathryn J. Hattersley, Leanne K. Hein, ... Leonie K. Heilbronn & Timothy J. Sargeant
Autophagic flux is a critical cellular process that is vastly under-appreciated in terms of its importance to human health. Preclinical studies have demonstrated that reductions in autophagic flux cause cancer and exacerbate chronic diseases, including heart disease and the pathological hallmarks of dementia. Autophagic flux can be increased by targeting nutrition-related biochemical signaling. To date, translation of this knowledge has been hampered because there has been no way to directly measure autophagic flux in humans. In this study we detail a method whereby human macroautophagic/autophagic flux can be directly measured from human blood samples. We show that whole blood samples can be treated with the lysosomal inhibitor chloroquine, and peripheral blood mononuclear cells isolated from these samples could be used to measure autophagic machinery protein LC3B-II. Blocking of autophagic flux in cells while still in whole blood represents an important advance because it preserves genetic, nutritional, and signaling parameters inherent to the individual. We show this method was reproducible and defined LC3B-II as the best protein to measure autophagic flux in these cells. Finally, we show that this method is relevant to assess intra-individual variation induced by an intervention by manipulating nutrition signaling with an ex vivo treatment of whole blood that comprised leucine and insulin. Significantly, this method will enable the identification of factors that alter autophagic flux in humans, and better aid their translation in the clinic. With further research, it could also be used as a novel biomarker for risk of age-related chronic disease.
Autopahgy
2020
The African killifish: A short-lived vertebrate model to study the biology of sarcopenia and longevity
Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish—an extremely short-lived vertebrate—revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an “early-life” state in the extremely old stages. This suggests that in extremely old animals, there may be mechanisms that prevent further deterioration of skeletal muscle, contributing to an extension of life span. In line with this, we report a reduction in mortality rates in extremely old killifish. To identify mechanisms for this phenomenon, we used a systems metabolomics approach, which revealed that during aging there is a striking depletion of triglycerides, mimicking a state of calorie restriction. This results in the activation of mitohormesis, increasing Sirt1 levels, which improves lipid metabolism and maintains nutrient homeostasis in extremely old animals. Pharmacological induction of Sirt1 in aged animals was sufficient to induce a late life-like metabolic profile, supporting its role in life span extension in vertebrate populations that are naturally long-lived. Collectively, our results demonstrate that killifish are not only a novel model to study the biological processes that govern sarcopenia, but they also provide a unique vertebrate system to dissect the regulation of longevity.https://onlinelibrary.wiley.com/doi/10.1111/acel.13862
Aging Cell
2023
Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle
Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n = 3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse “ages” the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.https://onlinelibrary.wiley.com/doi/10.1111/acel.13859
Aging Cell
2023